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New enhancement of infrared image based on

human visual system
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Infrared images are firstly analyzed using the multifractal theory so that the singularity of each pixel
can be extracted from the images. The multifractal spectrum is then estimated, which can reflect overall
characteristic of an infrared image. Thus the edge and texture of an infrared image can be accurately
extracted based on the singularity of each pixel and the multifractal spectrum. Finally the edge pixels are
classified and enhanced in accordance with the sensitivity of human visual system to the edge profile of
an infrared image. The experimental results obtained by this approach are compared with those obtained
by other methods. It is found that the proposed approach can be used to highlight the edge area of an
infrared image to make an infrared image more suitable for observation by human eyes.
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Histogram equalization is an algorithm most commonly
used to enhance infrared images. This algorithm can
effectively enhance the contrast of an infrared image.
However, it also causes an excessive enhancement of de-
tails and the occasional loss of edge details and features,
which undoubtedly have an adverse effect on the visual
effects of infrared images. The information contents are
different in different areas of an image, and so is their
importance. In reality, it is not the whole image that con-
tains the same important information for an observer,
and it is more often that the observer is interested in
part of the image only. It is usually human eyes that
evaluate the final results of image enhancement, and so
a very good visual effect can be obtained if enhancement
of infrared images is based on a human visual system
(HVS).

Most of the image enhancements used at present are in
the space or frequency domain and few are fractal based
ways. According to the fractal theory, fractal is a more
common and typical phenomenon over a natural surface.
Like many natural images, infrared images have much
randomness in structure and noise. The gray scale of
an image is a coarse surface suitable for the description
and analysis of fractal when it is taken as the height of
a plane. Xia et al. have successfully applied fractal to
geographic simulation, grain analysis, segmentation, and
identification of images[1,2]. In this letter, we present the
application of fractal in the field of image enhancement.
The dimensions of fractal represent the similarity of im-
ages, not the gray scale, but the relationship between
one point and the surrounding points. When the fractal
dimension is used to enhance an image, the different
gray segments in the time domain and several frequency
ranges in the frequency domain are considered.

A variety of visual masking effects have been discov-
ered through physiologic and psychologic researches on
the vision of human eyes[3,4]. As shown in Fig. 1, the
analysis of contrast sensitivity function indicates that hu-

man eyes are much more sensitive to the changes in the
low frequency area than those in the high frequency area.
From the viewpoint of space frequency, human eyes are
a low-pass linear system with limited scene distinguish-
ing capacity and HVS is not sensitive to an excessively
high frequency. The perceptual experiments on the per-
ception of human eyes indicated that the attention of
human eyes is always concentrated on the fragmenta-
tion and characteristic profile of the object with all the
ordinary details totally neglected when human eyes are
sensing a natural object. In Fig. 1, H(w), which is a nor-
malized parameter, is the sensitivity function of vision
frequency response.

It is known through psychologic researches that an im-
age consists of three components with different percep-
tual significances: smooth area, edge area, and texture
area. An area is called a smooth area if the change in its
gray scale is gentle, and an area is called an edge area
if the change in its gray scale is severe. The density of
edges in an edge area is the basis for differentiation of
an edge area from a veined area. Images with different
information contents can thus be simply classified ac-
cording to HVS.

It can therefore be concluded that human eyes are

Fig. 1. Function of vision frequency response.
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very sensitive to the distortion of information in the edge
area of an image, more sensitive to the one in the smooth
area, and not sensitive to the one in the veined area.
The sensitivity of human eyes varies with the edge area,
smooth area, and texture area of an image, which means
there is a difference in the importance of information in
the texture area of an image. Therefore, the information
to which human eyes are sensitive can be enhanced max-
imally by weighting the fractal dimension corresponding
to the information contained in the three different areas.

The multifractal dimensions represent the similarities
of images. It does not accord to the gray scale of the
pixels themselves, but accords to the relationship of one
point and the surrounding points[5−7]. The fractal di-
mensions at this point can be obtained from the change in
the gray scale of one of its neighboring points. The char-
acteristics of an image signal cannot be fully described
by a single fractal dimension. It is known through ex-
periments that many images with a very big difference
in visual effects have a very similar fractal dimension. In
order to describe an image with more details, more pa-
rameters are needed for the description of different frac-
tal subsets. This is the reason why multifractal theory is
introduced.

When multifractal analysis is used, not only the geo-
metrical features but also the statistical feature of the
edge at different dimensions are taken into consideration
by using Hölder exponent α and multifractal singularity
spectrum f(α), respectively, so that the detailed infor-
mation at the main edges can be highlighted while the
unimportant edges are neglected. The drawback of doing
so is its higher sensitivity to noise. But it can be remedied
by defining the following parameters when supposing Ω
is the area of an image:

µmax(Ω) = max(I(x, y)), (1)

µmin(Ω) = min(I(x, y)), (2)

µsum(Ω) = sum(I(x, y)), (3)

µiso(Ω) = iso(I(x, y)), (4)

where (x, y) ∈ Ω, µmax(Ω) is the maximum gray scale of a
pixel in the area Ω, µmin(Ω) is the minimum gray scale of
a pixel in Ω, µsum(Ω) is the sum of some pixels in the area,
µiso(Ω) is the importance of the maximum subsets with
the same gray scale in the area. If there are N pixels of
different gray scales in an area, µiso(Ω) = 1. If all the pix-
els in an area have the same gray scale, µiso(Ω) = N . The
singularity of these measurements represents different in-
formation. µmax(Ω) and µmin(Ω) relate to the height of
singularity only, µsum(Ω) relates to both height and type
of singularity, and µiso(Ω) relates to the type of singu-
larity only. Each measure has its own parameters, and
different images have different statistical features. So,
it is necessary during the calculation to decide through
experiments and error analyses what measures should be
used to achieve the best visual effect.

We have a Hölder exponent αn at position

Ii,j,n · αn(Ii,j,n) =
log µ(Ii,j,n)

log Vn

. (5)

Supposing µ is the probability measure over [0, 1] ×

[0, 1], and Vn is an incremental series consisting of posi-
tive integers, then
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where
∑

i

∗ is the sum of µ(Ii,j,n) 6= 0 pixels. When there

is a limit, it is supposed that

τ(q) = lim
n→0

τn(q). (8)

The Legendre transformation from τ(q) to fl(α) is
defined as

fl(α) = inf
q∈R

(qα(q) − τ(q)). (9)

The calculation of multifractal parameters entails a
much larger amount of computational work[8,9], so some
computational techniques or approximation methods are
usually used. For a nonuniform measurability distribu-
tion, f(α) is a unimodal convex function of α. For a uni-
form measurability distribution, the modal curve is com-
pressed into a beeline. According to multifractal theory,
f(α) is called the singular spectrum of multifractal. A
fractal set can be quantitatively described by f(α). Mul-
tifractal analysis is very effective in processing signals of
singular structure. Local information can be obtained
from the Hölder exponent of α at each point while global
information can be obtained from the multifractal singu-
larity spectrum of the whole image.

The following is the image edge detection algorithm
used for multifractal frequency analysis.

Step 1: Select the α capacity series and the reference
measurability µ, so that the area Ω is a pixel area of
3 × 3.,

α(x, y) = lim
k→0

ln(µ(V (k))

ln(k)
. (10)

Step 2: Supposing Q is an image area, I(x, y) repre-
sents the gray scale of point (x, y), the singularity ex-
ponent α represents the local singularity of an image.
V (k) is defined as a square neighboring area of k × k
pixels, and the central point is the interesting point ex-
pressed by I(x, y). α(x, y) can be estimated from the
slope of ln(µ(V (k)) and ln(k). k relates to the arith-
metic location. If a small neighboring area is used, for
example, k ≤ 3, α(x, y) reflects the local singularity. If
a big neighboring area is used, α reflects a wider singu-
larity. As shown in Fig. 2, the image is formed by the
singularity indices of infrared images.

Step 3: There is a great variety of α obtained by cal-
culating the singularity exponent as specified in step 1.
The following can be obtained by calculating the maxi-
mum and minimum of the singularity exponent for each
point (x, y): αmax = max(α(x, y)), αmin = min(α(x, y)).
[αmax, αmin] is subdivided into N boxes and N(α) to
which α belongs is counted.
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Fig. 2. Multifractal spectrum function graph of an actual in-
frared image.

Step 4: f(α) represents the global singularity of an im-
age, and for singularity exponent α of each point (x, y),
f(α) can be obtained using the following equation usually
through the linear regression of (log N(α), log n),

f(α) = lim
n→∞

log N(α)

log n
. (11)

Multifractal spectrum, a two-dimensional (2D)
parabola, can be obtained by α and f(α) as shown in
Fig. 2. The multifractal nature of the infrared image can
be seen from the shape of the 2D parabola obtained by
fitting the actual infrared image. In Fig. 2, the curve a is
plotted by data α and f(α), and the curve b is obtained
by fitting all points of curve a.

Step 5: Classify the pixel points of an image according
to the multifractal frequency spectrum. The multifractal
frequency spectrum of ordinary edge pixel points remains
in the range of α ≤ 1.2, 1.0 ≤ f(α) ≤ 1.5. The greater
the threshold is, the finer the detected edge is.

The boundary point of an infrared image is the point to
which human eyes are sensitive. Better visual effects can
be obtained by enhancing these pixels. So the gray scale
of the pixels in the boundary area must be stretched so
that a brighter or darker sense can be generated, which
differentiates it from the pixels of non-boundary points,
thereby solving the problem of blurred edge of infrared
images. As human eyes are not sensitive to the noise in
the high frequency area of the boundary, the enhance-
ment of these pixel points will not result in the excessive
enhancement of noise.

According to the size of the sub-dimensional singular
feature of each point, each pixel is classified as detailed,
smooth, and veined. What has been obtained in the
previous steps is a matrix used to characterize the sin-
gularity α of each pixel and a mapping with α → f(α),
where f(α) is used to characterize the frequency at which
α appears. According to its way of calculation, a rule
has been defined as follows: the point corresponding to
this α is the uniform texture of an image when α ≤ 1.2
and 1.5 ≤ f(α) ≤ 1.8; the pixel point corresponding
to α is the boundary in an image when α ≤ 1.2 and
1.0 ≤ f(α) ≤ 1.5; the pixel corresponding to α is in the
smooth area of an image when 1.8 ≤ f(α) ≤ 2.0.

The edge of an image is enhanced using a bigger weight.
A weight of 1.2 is used for a smooth area; a weight of
1.4 is used for a veined area; and a weight of 1.6 is used
for a boundary area. The pixels in the boundary area
of an infrared image must be enhanced so that stronger
contrast can be generated to solve the problem of blurred
edge of an infrared image.

Fig. 3. Comparison of enhancement effect. (a) Original im-
age; (b) edge image by Soble algorithm; (c) edge image with
1.0 < f(α) < 1.1; (d) edge image with 1.0 < f(α) < 1.3; (e)
after histogram equalization; (f) by the proposed method.

Infrared images of 256×256 pixels are used to evaluate
the effectiveness of the algorithm proposed in this letter.
In order to better reflect the characteristics of height type
of an image, the multifractal singularity is measured us-
ing the sum of pixel areas. The enhancement results are
shown in Fig. 3. Figure 3(a) is an original image not suit-
able for observation by human eye for the darker image
without strong contrast, and it has a blurred edge and the
gray scale is distributed at a lower level. In Fig. 3(b), the
edge is extracted using the Sobel algorithm. In Figs. 3(c)
and (d), the edge is extracted using the proposed algo-
rithm. It can be seen that the edge is fully extracted and
HVS is sensitive to these edges.

As shown in Fig. 3(e), the contrast has been enhanced
through histogram equalization, but some details are so
excessively enhanced that they are illegible. While in
Fig. 3(f), the details of buildings and trees are detected
with the brightness improved. And the highlighted de-
tailed features are just in conformity with HVS. With a
proper f(α) selected, the edge detection method based
on multifractal frequency analysis can be used to detect
the linear edge of an image, and local highlight can be
achieved by enhancing the pixel in this area.

In order to detect and enhance the edge of an infrared
image, the Hölder exponent α(x, y) of a pixel point is
calculated, and its multifractal frequency spectrum f(α)
is then estimated. The distributions of the multifractal
spectrum of pixels reflect the structure of an image. The
edge of an image detected by a singularity measure is an
accurate local edge. The accuracy of edge detection can
be controlled by adjusting the range of f(α) in accor-
dance with the size of an edge required. The pixels of an
infrared image are then classified by their edges in accor-
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dance with the sensitivities of human eyes. Each pixel is
enhanced by weighting. It has been proved through com-
parative experiment with histogram equalization that the
method proposed here can be used to directly enhance
the details in which human eyes are interested so that
the enhanced image has a better visual effect, thereby
solving the problem of blurred infrared image.

This work was supported by the Natural Science
Foundation of Heilongjiang Province under Grant
No. F200818.
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